Equilibrium loading of cells with macromolecules by ultrasound: effects of molecular size and acoustic energy.

نویسندگان

  • Héctor R Guzmán
  • Daniel X Nguyen
  • Andrew J McNamara
  • Mark R Prausnitz
چکیده

Ultrasound has been shown to deliver small compounds, macromolecules, and DNA into cells, which suggests potential applications in drug and gene delivery. However, the effect of molecular size on intracellular uptake has not been quantified. This study measured the effect of molecule size (calcein, 623 Da; bovine serum albumin, 66 kDa; and two dextrans, 42 and 464 kDa) on molecular uptake and cell viability in DU145 prostate cancer cells exposed to 500 kHz ultrasound. Molecular uptake in viable cells was shown to be very similar for small molecules and macromolecules and found to correlate with acoustic energy exposure. Molecular uptake was seen to be heterogeneous among viable cells exposed to the same ultrasound conditions; this heterogeneity also correlated with acoustic energy exposure. In a fraction of these cells, molecular uptake reached thermodynamic equilibrium with the extracellular solution for the small molecule and all three macromolecules. The results demonstrate that ultrasound provides a means to load viable cells with large numbers of macromolecules, which may be of use for laboratory and possible clinical drug delivery applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Health Monitoring for Composite under Low-Cycle Cyclic Loading, Considering Effects of Acoustic Emission Sensor Type

Composites have been widely used in the aerospace industry. Due to the requirement of a high safety for such structures, they could be considered for health monitoring. The acoustic emission approach is one of most effective methods for identifying damages in composites. In this article, standard specimens were made from carbon fibers and the epoxy resin, with the [03/902/...

متن کامل

Blood Brain Barrier Disruption by Focused Ultrasound and Microbubbles: A Numerical Study on Mechanical Effects

Introduction: Microbubbles are widely used as contrast agent in diagnostic ultrasound. Recently they have shown good potential for applications in the therapeutic field such as drug delivery to the brain. Recent studies have shown focused ultrasound in conjunction with injected micro-bubbles could temporarily disrupt blood-brain barrier and let therapeutic agents transport into...

متن کامل

Quantum dots of CdS synthesized by micro-emulsion under ultrasound: size distribution and growth kinetics

Quantum dots of CdS with hexagonal phase were prepared at relatively low temperature (60 oC) and short time by micro-emulsion (O/W) under ultrasound. This study was focused on the particle size distribution and the growth kinetics. The particle size distribution obtained from the optical absorption edge. It was relatively symmetrical with sonication time. In addition, an agreement was observed ...

متن کامل

Investigation of acoustic properties of silica coated gold nanoparticle as contrast agent for Ultrasonography

Interoduction: Ultrasound images have often low contrast due to small differences in acoustic impedance between different tissues. Air or gas microbubbles that surrounded by membrane are most of the contrast agents in ultrasound imaging. Problems such as instability in sound pressure and inability in penetrating from the blood vessel into body tissues limited the use of microbubbles into the in...

متن کامل

An overview of therapeutic applications of ultrasound based on synergetic effects with gold nanoparticles and laser excitation

Acoustic cavitation which occurs at high intensities of ultrasound waves can be fatal for tumor cells. The existence of dissolved gases and also the presence of nanoparticles (NPs) in a liquid, irradiated by ultrasound, decrease the acoustic cavitation onset threshold and the resulting bubbles collapse. On the other hand, due to unique capabilities and optical properties of gold nanoparticles (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of pharmaceutical sciences

دوره 91 7  شماره 

صفحات  -

تاریخ انتشار 2002